Impact of Diabetic Retinopathy on Ocular Surface Temperature: Insights from Medical Thermography
Abstract
Objective: This study aimed to investigate the impact of diabetic retinopathy on the ocular surface temperature (OST) profile, exploring potential links between temperature variations and the inflammatory processes associated with the condition.
Material and Methods: Medical thermography, a non-invasive technique that captures thermal radiation emitted from body organs, was employed to measure OST and lacrimal sac temperature in patients with diabetic retinopathy (DR) compared to healthy controls. Statistical analyses were conducted to assess temperature differences between the 2 groups.
Results: The analysis revealed a significant difference in OST and lacrimal sac temperature between eyes affected by DR and healthy eyes, with a p-value of 0.006. This finding indicates notable temperature deviations in the presence of diabetic retinopathy.
Conclusion: The observed temperature variations support the hypothesis that inflammation may play a significant role in the pathophysiology of diabetic retinopathy, highlighting the potential of thermography as a valuable diagnostic tool in understanding ocular surface changes in this condition.
Keywords
Full Text:
PDFReferences
Tong L, Vernon SA, Kiel W, Sung V, Orr GM. Association of macular involvement with proliferative retinopathy in type 2 diabetes. Diabet Med 2001;18:388–94. doi: 10.1046/j.1464-5491.2001.00483.x.
Kraśnicki P, Mariak Z, Ustymowicz A, Proniewska-Skretek E. Assessment of blood flow in the ocular circulation in type 2 diabetes patients with Color Doppler imaging. Klin Oczna 2006;108:294-8.
Sodi A, Giambene B, Miranda P, Falaschi G, Corvi A, Menchini U, Ocular surface temperature in diabetic retinopathy: a pilot study by infrared thermography, Eur J Ophthalmol 2009;19:1004-8. doi: 10.1177/112067210901900617.
Modrzejewska A. The role of thermography in ophthalmology.Ophtha Therapy 2021;9:14-21. doi: 10.24292/01.OT.291221.
Gulias-Cañizo R, Rodríguez-Malagón ME, Botello-González L, Belden-Reyes V, Amparo F, Garza-Leon M. Applications of infrared thermography in ophthalmology. Life 2023;13:723. doi: 10.3390/life13030723.
Persiya J, Sasithradevi A. Thermal mapping the eye: a critical review of advances in infrared imaging for disease detection. J Therm Biol 2024;121:103867. doi: 10.1016/j.jtherbio.2024.103867.
Naidorf-Rosenblatt H, Landau-Part D, Moisseiev J, Alhalel A, Huna-Baron R, Skaat A, et al. Ocular surface temperature differences in retinal vascular diseases. Retina 2022;42:152-8.doi: 10.1097/IAE.0000000000003278.
Chandrasekar B, Rao AP, Murugesan M, Subramanian S, Sharath D, Manoharan U, et al. Ocular surface temperature measurement in diabetic retinopathy. Expt Eye Res 2021;211:108749.
Machado MA, Silva JA, Brioschi ML, Allemann N. Using thermography for an obstruction of the lower lacrimal system. Arq Bras Oftalmol 2016;79:46–7. doi: 10.5935/0004-2749.20160014.
Shu H, Li Y, Fang T, Xing M, Sun F, Chen X, et al. Evaluation of the best region for measuring eye temperature in dairy cows exposed to heat stress. Front Vet Sci 2022;9:857777. doi: 10.3389/fvets.2022.857777.
FLIR Systems, Inc. User’s manual: FLIR Ax5 series [monograph on the Internet]. Wilsonville (OR): FLIR Systems, Inc.; 2021 Dec 6. Available from: https://www.ads-tec.co.jp/wp/wp-content/uploads/2022/06/Users-manual_FLIR-Ax5-series_t559770-en-us_20211206.pdf
Freeman RD, Fatt I. Environmental influences on ocular temperature. Invest Ophthalmol Vis Sci 1973;12:596–602.
Tkáčová M, Živčák J, Foffová P. A reference for human eye surface temperature measurements in diagnostic process of ophthalmologic diseases. In: MEASUREMENT 2011, Proceedings of the 8th International Conference, Smolenice, 27-30 April 2011; Kosice, Slovakia: CEIT-KE;p.406-9.
Klamann MKJ, Maier AKB, Gonnermann J, Klein JP, Pleyer U. Measurement of dynamic ocular surface temperature in healthy subjects using a new thermography device. Curr Eye Res 2012;37:678–83. doi: 10.3109/02713683.2012.674610.
Konieczka K, Schoetzau A, Koch S, Hauenstein D, Flammer J. Cornea thermography: optimal evaluation of the outcome and the resulting reproducibility. Trans Vis Sci Tech 2018;7:14. doi: 10.1167/tvst.7.3.14.
Tan JH, Ng EYK, Acharya R, Chee C. Automated study of ocular thermal images: comprehensive analysis of corneal health with different age group subjects and validation. Digit Signal Process 2010;20:1579–91.
Vannetti F, Sodi A, Lacarbonara F, Corvi A. Relationship between Ocular Surface Temperature and Peripheral Vasoconstriction. In: Jobbágy Á. (editor) 5th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, Berlin, Heidelberg: Springer; 2011;37.
Eleonora Micheletti, Nevin W. El-Nimri, Robert N. Weinreb, John H. K. Liu. Relative stability of regional facial and ocular temperature measurements in healthy individuals. Transl Vis Sci Technol 2022;11:15. doi: 10.1167/tvst.11.12.15.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.