Effectiveness of Kelakai (Stenochlaena palustris (Burm.) Bedd) Extract as an Anti-diabetic through Increased GLUT 4 Expression without Affecting Insulin Levels
Abstract
Objective: Untreated hyperglycemia disrupts insulin secretion and blocks glucose transporter 4 (GLUT 4), consequently affecting the glucose levels of patients with type 2 diabetes mellitus. This study aimed to investigate the effectiveness of kelakai on GLUT 4 expression.
Material and Methods: In this study, a laboratory experiment was performed, with a pre and posttest group design for fasting blood glucose and insulin levels and using posttest only expression GLUT 4 immunohistochemistry methods. A total of 25 rats were divided into 5 groups: nondiabetic, diabetic, diabetic+glimepiride, diabetic+kelakai extract 400 mg/kgBW, and diabetic+kelakai extract 800 mg/kgBW for 21 days.
Results: The 400 and 800 mg/kgBW groups had significant effects (p-value<0.05) on decreasing the fasting glucose levels. A 400 mg/kgBW dose gave a better picture of the fasting glucose levels and reversed the GLUT 4 expression to normal levels. The kelakai extract lowered the fasting blood glucose levels by increasing the GLUT 4 expression in the soleus muscle tissue without affecting the insulin secretion.
Conclusion: Kelakai (S. palustris (Burm.f) Bedd) extract significantly reduced the fasting glucose levels by increasing the GLUT 4 expression without affecting the insulin levels at the best dose of 400 mg/kgBB. Thus, it has potential for use in anti-diabetic therapy.
Keywords
Full Text:
PDFReferences
International Diabetes Federation. IDF Diabetes Atlas [homepage on the Internet]. Brussels: International Diabetes Federation (IDF); 2021 [cited 2023 Aug 29]. Available from: https://diabetesatlas.org/
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020;21:6275; doi: 10.3390/ijms21176275.
Khin PP, Lee JH, Jun HS. Pancreatic beta-cell dysfunction in type 2 diabetes. Eur J Inflamm 2023;21:1–13. doi: 10.1177/1721727X231154152.
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, et al. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes 2023;14:130–46. doi: 10.4239/wjd.v14.i3.130.
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020;11:76–98; doi: 10.4331/wjbc.v11.i3.76.
Kartikadewi A, Prasetyo A, Budipradigdo L, et al. Artemisia annua leaf extract increases GLUT-4 expression in type 2 diabetes mellitus rat. Indones Biomed J 2019;11:78–84. doi: 10.18585/inabj.v11i1.531.
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, et al. Diabetes mellitus: Classification, mediators, and complications; a gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023;168:115734. doi: 10.1016/j.biopha.2023.115734.
Fatmawati F, Fauzana NAFN, Aisiah S, Rini RKRRK, Olga O, Tanod WA, et al. Chemicals profile of kelakai leaves extracts (stenochlaena palustris) with antioxidant and antibacterial activity against aeromonas hydrophila. J Sains Malaysiana 2021;51:2531–46.doi: 10.17576/jsm-2022-5108-14.
Hendra R, Army MK, Frimayanti N, Teruna HY, Abdulah R, Nugraha AS, et al. α-glucosidase and α-amylase inhibitory activity of flavonols from Stenochlaena palustris (Burm.f.) Bedd. Saudi Pharm J 2024;32:101940. doi: 10.1016/j.jsps.2023.101940.
Gunawan-Puteri MDPT, Kato E, Rahmawati D, et al. Post-harvest and extraction conditions for the optimum alpha glucosidase inhibitory activity of stenochlaena palustris. Int J Tech 2021;12:649–60. doi: 10.14716/ijtech.v12i3.4409.
Chai TT, Kwek MT, Ong HC, Wong FC. Water fraction of edible medicinal fern Stenochlaena palustris is a potent α-glucosidase inhibitor with concurrent antioxidant activity. Food Chem 2015;186:26-31. doi: 10.1016/j.foodchem.2014.12.099
Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue – a review. Diagnostic Pathology 2014;9:221; doi: 10.1186/s13000-014-0221-9.
Ois N, Kusmardi K. Imunohistokimia pada Kanker Payudara: Teknik, Aplikasi, dan Implikasinya dalam Diagnostik dan Terapi. Pratista Patologi 2024;9:185–97.
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals (Basel) 2021;14:806. doi: 10.3390/ph14080806.
Weng Y, Yu L, Cui J, Zhu YR, Guo C, Wei G, et al. Antihyperglycemic, hypolipidemic and antioxidant activities of total saponins extracted from Aralia taibaiensis in experimental type 2 diabetic rats. J Ethnopharmacol 2014;152:553-60. doi: 10.1016/j.jep.2014.02.001.
Andrestian M, Damanik R, Anwar F, Yuliana ND. Effects of torbangun leaves(coleus amboinicus lour) extract on blood glucose and super oxide dismutase activity in hyperglycemic rats. J Gizi Pangan 2019;14:149–56. doi: 10.25182/jgp.2019.14.3.149-156.
Balakrishnan BB, Krishnasamy K, Mayakrishnan V, Selvaraj A. Moringa concanensis Nimmo extracts ameliorates hyperglycemia-mediated oxidative stress and upregulates PPARγ and GLUT4 gene expression in liver and pancreas of streptozotocin-nicotinamide induced diabetic rats. Biomed Pharmacother 2019;112:108688. doi: 10.1016/j.biopha.2019.108688.
Husna F, Suyatna FD, Arozal W, Purwaningsih EH, Hanafi M, Razali R, et al. Murraya koenigii extract improving rate limiting enzymes on carbohydrate metabolism and GLUT-4 expression of hyperglycemic rats. J App Pharm Sci 2022;143–9. doi: 10.7324/JAPS.2022.121215.
Yan LJ. The nicotinamide/streptozotocin rodent model of type 2 diabetes: renal pathophysiology and redox imbalance features. Biomolecules 2022;12:1225. doi: 10.3390/biom12091225.
Rais N, Ved A, Ahmad R, Parveen K, Gautam GK, Bari DG, et al. Model of streptozotocin-nicotinamide induced type 2 diabetes: a comparative review. Curr Diabetes Rev 2022;18:e171121198001. doi: 10.2174/1573399818666211117123358.
Yang L, Wang J, Cheke RA, Tang S. A universal delayed difference model fitting dose-response curves. Dose Response 2021;19:15593258211062785. doi: 10.1177/15593258211062785.
Yasaroh S, Christijanti W, Lisdiana, et al. Efek Ekstrak Daun Kelor (Moringa oleifera) Terhadap Kadar Glukosa Darah Tikus Diabetes Induksi Aloksan. Prosiding Semnas Biologi FMIPA Universitas Semarang 2021;224–9.
Shah MA, Muhammad H, Mehmood Y, Khalil R, Ul-Haq Z, Panichayupakaranant P, et al. Superoxide scavenging and antiglycation activity of rhinacanthins-rich extract obtained from the leaves of rhinacanthus nasutus. Pharmacogn Mag 2017;13:652–8. doi: 10.4103/pm.pm_196_17.
Suryadini H. Uji Parameter Standard Dan Penapisan Fitokimia Pada Daun Steril Kalakai (Stenochlaena palustris (Burm.f.) Bedd.) Menggunakan Ekstraksi Bertingkat. Jurnal Ilmiah Farmasi Farmasyifa 2019;2:40–51; doi: 10.29313/jiff.v2i1.3968.
Widayati R, Rahayu SN, Jelita H. Aktivitas Antijamur Daun Kelakai (Stenochlaena palustris (Burm.f)Bedd). J Kesehatan Tambusai 2022;3:55–61.
Chang W, Chen L, Hatch GM. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes. Biochim Biophys Acta 2016;1861:352-62. doi: 10.1016/j.bbalip.2015.12.017.
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. et al. Olive leaf polyphenols (OLPs) stimulate GLUT4 expression and translocation in the skeletal muscle of diabetic rats. Int J Mol Sci 2020;21:8981. doi: 10.3390/ijms21238981.
Jiang H, Yamashita Y, Nakamura A, Croft K, Ashida H. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci Rep 2019;9:2690. doi: 10.1038/s41598-019-38711-7.s41598-.
Park JE, Park JY, Seo Y, Han JS. A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. Int J Biol Macromol 2019;123:26–34; doi: 10.1016/j.ijbiomac.2018.10.206.
Yamashita Y, Kishida H, Nakagawa K, Yoshioka Y, Ashida H. Liquorice flavonoid oil suppresses hyperglycaemia accompanied by skeletal muscle myocellular GLUT4 recruitment to the plasma membrane in KK-Ay mice. Int J Food Sci Nutr 2019;70:294-302. doi: 10.1080/09637486.2018.1508425.
Wang Y, Liu G, Liu X, Chen M, Zeng Y, Li Y, et al. Serpentine enhances insulin regulation of blood glucose through insulin receptor signaling pathway. Pharmaceuticals (Basel) 2022;16:16. doi: 10.3390/ph16010016.
Kang BB, Chiang BH. A novel phenolic formulation for treating hepatic and peripheral insulin resistance by regulating GLUT4-mediated glucose uptake. J Tradit Complement Med 2021;12:195-205. doi: 10.1016/j.jtcme.2021.08.004.
Meng Q, Qi X, Fu Y, Chen Q, Cheng P, Yu X, et al. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J Ethnopharmacol 2020;248:112326.
Pasaribu S, Wiboworini B, Kartikasari L. Effect of germinated black rice krisna extract on fasting blood glucose and body weight in diabetes mellitus rats. Int J Nutr Sci 2021;6:194–200; doi: 10.30476/IJNS.2021.93204.1163.
Zanaria R, Kamaluddin M, Theodorus T. Efektivitas Ekstrak Etanol Daun Salam (Eugenia polyantha) terhadap GLUT 4 di Jaringan Adiposa dan Kadar Gula Darah Puasa pada Tikus Putih Jantan. Biomed J of Indones 2019;3:145–53; doi: 10.32539/bji.v3i3.8605.
Behl T, Gupta A, Albratty M, Najmi A, Meraya AM, Alhazmi HA, et al. Alkaloidal phytoconstituents for diabetes management: exploring the unrevealed potential. Molecules. 2022;27:5851. doi: 10.3390/molecules27185851.
Nie T, Cooper GJS. Mechanisms underlying the antidiabetic activities of polyphenolic compounds: a review. Front Pharmacol 2021;12:798329. doi: 10.3389/fphar.2021.798329.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.